LC 658. 找到 K 个最接近的元素
题目描述
这是 LeetCode 上的 658. 找到 K 个最接近的元素 ,难度为 中等。
给定一个排序好的数组 arr
,两个整数 k
和 x
,从数组中找到最靠近 x
(两数之差最小)的 k
个数。
返回的结果必须要是按升序排好的。
整数 a
比整数 b
更接近 x
需要满足:
|a - x| < |b - x|
或者|a - x| == |b - x|
且a < b
示例 1:1
2
3输入:arr = [1,2,3,4,5], k = 4, x = 3
输出:[1,2,3,4]
示例 2:1
2
3输入:arr = [1,2,3,4,5], k = 4, x = -1
输出:[1,2,3,4]
提示:
- $1 <= k <= arr.length$
- $1 <= arr.length <= 10^4$
arr
按升序排列- $-10^4 <= arr[i], x <= 10^4$
二分 + 双指针
容易想到先通过「二分」找到与 x
差值最小的位置 idx
,然后从 idx
开始使用「双指针」往两边进行拓展(初始化左端点 $i = idx - 1$,右端点 $j = idx + 1$),含义为 $[i + 1, j - 1]$ 范围内子数组为候选区间,不断根据两边界与 x
的差值关系进行扩充,直到候选区间包含 $k$ 个数。
Java 代码:1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25class Solution {
public List<Integer> findClosestElements(int[] arr, int k, int x) {
int n = arr.length, l = 0, r = n - 1;
while (l < r) {
int mid = l + r + 1 >> 1;
if (arr[mid] <= x) l = mid;
else r = mid - 1;
}
r = r + 1 < n && Math.abs(arr[r + 1] - x) < Math.abs(arr[r] - x) ? r + 1 : r;
int i = r - 1, j = r + 1;
while (j - i - 1 < k) {
if (i >= 0 && j < n) {
if (Math.abs(arr[j] - x) < Math.abs(arr[i] - x)) j++;
else i--;
} else if (i >= 0) {
i--;
} else {
j++;
}
}
List<Integer> ans = new ArrayList<>();
for (int p = i + 1; p <= j - 1; p++) ans.add(arr[p]);
return ans;
}
}
C++ 代码:1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26class Solution {
public:
vector<int> findClosestElements(vector<int>& arr, int k, int x) {
int n = arr.size(), l = 0, r = n - 1;
while (l < r) {
int mid = l + r + 1 >> 1;
if (arr[mid] <= x) l = mid;
else r = mid - 1;
}
r = (r + 1 < n && abs(arr[r + 1] - x) < abs(arr[r] - x)) ? r + 1 : r;
int i = r - 1, j = r + 1;
while (j - i - 1 < k) {
if (i >= 0 && j < n) {
if (abs(arr[j] - x) < abs(arr[i] - x)) j++;
else i--;
} else if (i >= 0) {
i--;
} else {
j++;
}
}
vector<int> ans;
for (int p = i + 1; p <= j - 1; p++) ans.push_back(arr[p]);
return ans;
}
};
Python 代码:1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21class Solution:
def findClosestElements(self, arr: List[int], k: int, x: int) -> List[int]:
n = len(arr)
l, r = 0, n - 1
while l < r:
mid = l + r + 1 >> 1
if arr[mid] <= x: l = mid
else: r = mid - 1
r = r + 1 if r + 1 < n and abs(arr[r + 1] - x) < abs(arr[r] - x) else r
i, j = r - 1, r + 1
while j - i - 1 < k:
if i >= 0 and j < n:
if abs(arr[j] - x) < abs(arr[i] - x):
j += 1
else:
i -= 1
elif i >= 0:
i -= 1
else:
j += 1
return arr[i + 1:j]
TypeScript 代码:1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21function findClosestElements(arr: number[], k: number, x: number): number[] {
let n = arr.length, l = 0, r = n - 1
while (l < r) {
const mid = l + r + 1 >> 1
if (arr[mid] <= x) l = mid
else r = mid - 1
}
r = r + 1 < n && Math.abs(arr[r + 1] - x) < Math.abs(arr[r] - x) ? r + 1 : r
let i = r - 1, j = r + 1
while (j - i - 1 < k) {
if (i >= 0 && j < n) {
if (Math.abs(arr[j] - x) < Math.abs(arr[i] - x)) j++
else i--
} else if (i >= 0) {
i--
} else {
j++
}
}
return arr.slice(i + 1, j);
};
- 时间复杂度:查找分割点复杂度为 $O(\log{n})$;从分割点往两边拓展复杂度为 $O(k)$。整体复杂度为 $O(\log{n} + k)$
- 空间复杂度:$O(1)$
最后
这是我们「刷穿 LeetCode」系列文章的第 No.658
篇,系列开始于 2021/01/01,截止于起始日 LeetCode 上共有 1916 道题目,部分是有锁题,我们将先把所有不带锁的题目刷完。
在这个系列文章里面,除了讲解解题思路以外,还会尽可能给出最为简洁的代码。如果涉及通解还会相应的代码模板。
为了方便各位同学能够电脑上进行调试和提交代码,我建立了相关的仓库:https://github.com/SharingSource/LogicStack-LeetCode 。
在仓库地址里,你可以看到系列文章的题解链接、系列文章的相应代码、LeetCode 原题链接和其他优选题解。
本博客所有文章除特别声明外,均采用 CC BY-SA 4.0 协议 ,转载请注明出处!