LC 873. 最长的斐波那契子序列的长度

题目描述

这是 LeetCode 上的 873. 最长的斐波那契子序列的长度 ,难度为 中等

如果序列 $X_1, X_2, …, X_n$ 满足下列条件,就说它是 斐波那契式 的:

  • n >= 3
  • 对于所有 i + 2 <= n,都有 $Xi + X{i+1} = X_{i+2}$

给定一个严格递增的正整数数组形成序列 arr,找到 arr 中最长的斐波那契式的子序列的长度。如果一个不存在,返回 $0$ 。

(回想一下,子序列是从原序列 arr 中派生出来的,它从 arr 中删掉任意数量的元素(也可以不删),而不改变其余元素的顺序。例如, [3, 5, 8][3, 4, 5, 6, 7, 8] 的一个子序列)

示例 1:

1
2
3
4
5
输入: arr = [1,2,3,4,5,6,7,8]

输出: 5

解释: 最长的斐波那契式子序列为 [1,2,3,5,8] 。

示例 2:
1
2
3
4
5
输入: arr = [1,3,7,11,12,14,18]

输出: 3

解释: 最长的斐波那契式子序列有 [1,11,12][3,11,14] 以及 [7,11,18]

提示:

  • $3 <= arr.length <= 1000$
  • $1 <= arr[i] < arr[i + 1] <= 10^9$

序列 DP

定义 $f[i][j]$ 为使用 $arr[i]$ 为斐波那契数列的最后一位,使用 $arr[j]$ 为倒数第二位(即 $arr[i]$ 的前一位)时的最长数列长度。

不失一般性考虑 $f[i][j]$ 该如何计算,首先根据斐波那契数列的定义,我们可以直接算得 $arr[j]$ 前一位的值为 $arr[i] - arr[j]$,而快速得知 $arr[i] - arr[j]$ 值的坐标 $t$,可以利用 arr 的严格单调递增性质,使用「哈希表」对坐标进行转存,若坐标 $t$ 存在,并且符合 $t < j$,说明此时至少凑成了长度为 $3$ 的斐波那契数列,同时结合状态定义,可以使用 $f[j][t]$ 来更新 $f[i][j]$,即有状态转移方程:

同时,当我们「从小到大」枚举 $i$,并且「从大到小」枚举 $j$ 时,我们可以进行如下的剪枝操作:

  • 可行性剪枝:当出现 $arr[i] - arr[j] >= arr[j]$,说明即使存在值为 $arr[i] - arr[j]$ 的下标 $t$,根据 arr 单调递增性质,也不满足 $t < j < i$ 的要求,且继续枚举更小的 $j$,仍然有 $arr[i] - arr[j] >= arr[j]$,仍不合法,直接 break 掉当前枚举 $j$ 的搜索分支;
  • 最优性剪枝:假设当前最大长度为 ans,只有当 $j + 2 > ans$,我们才有必要往下搜索,$j + 2$ 的含义为以 $arr[j]$ 为斐波那契数列倒数第二个数时的理论最大长度。

代码:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
class Solution {
public int lenLongestFibSubseq(int[] arr) {
int n = arr.length, ans = 0;
Map<Integer, Integer> map = new HashMap<>();
for (int i = 0; i < n; i++) map.put(arr[i], i);
int[][] f = new int[n][n];
for (int i = 0; i < n; i++) {
for (int j = i - 1; j >= 0 && j + 2 > ans; j--) {
if (arr[i] - arr[j] >= arr[j]) break;
int t = map.getOrDefault(arr[i] - arr[j], -1);
if (t == -1) continue;
f[i][j] = Math.max(3, f[j][t] + 1);
ans = Math.max(ans, f[i][j]);
}
}
return ans;
}
}

  • 时间复杂度:存入哈希表复杂度为 $O(n)$;DP 过程复杂度为 $O(n^2)$。整体复杂度为 $O(n^2)$
  • 空间复杂度:$O(n^2)$

最后

这是我们「刷穿 LeetCode」系列文章的第 No.873 篇,系列开始于 2021/01/01,截止于起始日 LeetCode 上共有 1916 道题目,部分是有锁题,我们将先把所有不带锁的题目刷完。

在这个系列文章里面,除了讲解解题思路以外,还会尽可能给出最为简洁的代码。如果涉及通解还会相应的代码模板。

为了方便各位同学能够电脑上进行调试和提交代码,我建立了相关的仓库:https://github.com/SharingSource/LogicStack-LeetCode

在仓库地址里,你可以看到系列文章的题解链接、系列文章的相应代码、LeetCode 原题链接和其他优选题解。


本博客所有文章除特别声明外,均采用 CC BY-SA 4.0 协议 ,转载请注明出处!