LC 802. 找到最终的安全状态
题目描述
这是 LeetCode 上的 802. 找到最终的安全状态 ,难度为 中等。
在有向图中,以某个节点为起始节点,从该点出发,每一步沿着图中的一条有向边行走。如果到达的节点是终点(即它没有连出的有向边),则停止。
对于一个起始节点,如果从该节点出发,无论每一步选择沿哪条有向边行走,最后必然在有限步内到达终点,则将该起始节点称作是 安全 的。
返回一个由图中所有安全的起始节点组成的数组作为答案。答案数组中的元素应当按 升序 排列。
该有向图有 n 个节点,按 0 到 n - 1 编号,其中 n 是 graph 的节点数。图以下述形式给出:graph[i] 是编号 j 节点的一个列表,满足 (i, j) 是图的一条有向边。
示例 1:1
2
3
4
5输入:graph = [[1,2],[2,3],[5],[0],[5],[],[]]
输出:[2,4,5,6]
解释:示意图如上。
示例 2:1
2
3输入:graph = [[1,2,3,4],[1,2],[3,4],[0,4],[]]
输出:[4]
提示:
- n == graph.length
- 1 <= n <= $10^4$
- 0 <= graph[i].length <= n
- graph[i] 按严格递增顺序排列。
- 图中可能包含自环。
- 图中边的数目在范围 [1, 4 * $10^4$] 内。
基本分析 & 拓扑排序
为了方便,我们令点数为 $n$,边数为 $m$。
在图论中,一个有向无环图必然存在至少一个拓扑序与之对应,反之亦然。
如果对拓扑排序不熟悉的小伙伴,可以看看 拓扑排序。
简单来说,就是将图中的所有节点展开成一维序列,对于序列中任意的节点 $(u, v)$,如果在序列中 $u$ 在 $v$ 的前面,则说明在图中存在从 $u$ 出发达到 $v$ 的通路,即 $u$ 排在 $v$ 的前面。反之亦然。
同时,我们需要知晓「入度」和「出度」的概念:
- 入度:有多少条边直接指向该节点;
- 出度:由该节点指出边的有多少条。
因此,对于有向图的拓扑排序,我们可以使用如下思路输出拓扑序(BFS
方式):
- 起始时,将所有入度为 $0$ 的节点进行入队(入度为 $0$,说明没有边指向这些节点,将它们放到拓扑排序的首部,不会违反拓扑序定义);
- 从队列中进行节点出队操作,出队序列就是对应我们输出的拓扑序。
对于当前弹出的节点 $x$,遍历 $x$ 的所有出度,即遍历所有由 $x$ 直接指向的节点 $y$,对 $y$ 做入度减一操作(因为 $x$ 节点已经从队列中弹出,被添加到拓扑序中,等价于从 $x$ 节点从有向图中被移除,相应的由 $x$ 发出的边也应当被删除,带来的影响是与 $x$ 相连的节点 $y$ 的入度减一); - 对 $y$ 进行入度减一之后,检查 $y$ 的入度是否为 $0$,如果为 $0$ 则将 $y$ 入队(当 $y$ 的入度为 $0$,说明有向图中在 $y$ 前面的所有的节点均被添加到拓扑序中,此时 $y$ 可以作为拓扑序的某个片段的首部被添加,而不是违反拓扑序的定义);
- 循环流程 $2$、$3$ 直到队列为空。
证明
上述 BFS
方法能够求得「某个有向无环图的拓扑序」的前提是:我们必然能够找到(至少)一个「入度为 $0$ 的点」,在起始时将其入队。
这可以使用反证法进行证明:假设有向无环图的拓扑序不存在入度为 $0$ 的点。
那么从图中的任意节点 $x$ 进行出发,沿着边进行反向检索,由于不存在入度为 $0$ 的节点,因此每个点都能够找到上一个节点。
当我们找到一条长度为 $n + 1$ 的反向路径时,由于我们图中只有 $n$ 个节点,因此必然有至少一个节点在该路径中重复出现,即该反向路径中存在环,与我们「有向无环图」的起始条件冲突。
得证「有向无环图的拓扑序」必然存在(至少)一个「入度为 $0$ 的点」。
即按照上述的 BFS
方法,我们能够按照流程迭代下去,直到将有向无环图的所有节点从队列中弹出。
反之,如果一个图不是「有向无环图」的话,我们是无法将所有节点入队的,因此能够通过入队节点数量是否为 $n$ 来判断是否为有向无环图。
反向图 + 拓扑排序
回到本题,根据题目对「安全节点」的定义,我们知道如果一个节点无法进入「环」的话则是安全的,否则是不安全的。
另外我们发现,如果想要判断某个节点数 $x$ 是否安全,起始时将 $x$ 进行入队,并跑一遍拓扑排序是不足够的。
因为我们无法事先确保 $x$ 满足入度为 $0$ 的要求,所以当我们处理到与 $x$ 相连的节点 $y$ 时,可能会存在 $y$ 节点入度无法减到 $0$ 的情况,即我们无法输出真实拓扑序中,从 $x$ 节点开始到结尾的完整部分。
但是根据我们「证明」部分的启发,我们可以将所有边进行反向,这时候「入度」和「出度」翻转了。
对于那些反向图中「入度」为 $0$ 的点集 $x$,其实就是原图中「出度」为 $0$ 的节点,它们「出度」为 $0$,根本没指向任何节点,必然无法进入环,是安全的;同时由它们在反向图中指向的节点(在原图中只指向它们的节点),必然也是无法进入环的,对应到反向图中,就是那些减去 $x$ 对应的入度之后,入度为 $0$ 的节点。
因此整个过程就是将图进行反向,再跑一遍拓扑排序,如果某个节点出现在拓扑序列,说明其进入过队列,说明其入度为 $0$,其是安全的,其余节点则是在环内非安全节点。
另外,这里的存图方式还是使用前几天一直使用的「链式前向星」,关于几个数组的定义以及其他的存图方式,如果还是有不熟悉的小伙伴可以在 这里 查阅,本次不再赘述。
代码:1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40class Solution {
int N = (int)1e4+10, M = 4 * N;
int idx;
int[] he = new int[N], e = new int[M], ne = new int[M];
int[] cnts = new int[N];
void add(int a, int b) {
e[idx] = b;
ne[idx] = he[a];
he[a] = idx++;
}
public List<Integer> eventualSafeNodes(int[][] g) {
int n = g.length;
// 存反向图,并统计入度
Arrays.fill(he, -1);
for (int i = 0; i < n; i++) {
for (int j : g[i]) {
add(j, i);
cnts[i]++;
}
}
// BFS 求反向图拓扑排序
Deque<Integer> d = new ArrayDeque<>();
for (int i = 0; i < n; i++) {
if (cnts[i] == 0) d.addLast(i);
}
while (!d.isEmpty()) {
int poll = d.pollFirst();
for (int i = he[poll]; i != -1; i = ne[i]) {
int j = e[i];
if (--cnts[j] == 0) d.addLast(j);
}
}
// 遍历答案:如果某个节点出现在拓扑序列,说明其进入过队列,说明其入度为 0
List<Integer> ans = new ArrayList<>();
for (int i = 0; i < n; i++) {
if (cnts[i] == 0) ans.add(i);
}
return ans;
}
}
- 时间复杂度:$O(n + m)$
- 空间复杂度:$O(n + m)$
最后
这是我们「刷穿 LeetCode」系列文章的第 No.802
篇,系列开始于 2021/01/01,截止于起始日 LeetCode 上共有 1916 道题目,部分是有锁题,我们将先把所有不带锁的题目刷完。
在这个系列文章里面,除了讲解解题思路以外,还会尽可能给出最为简洁的代码。如果涉及通解还会相应的代码模板。
为了方便各位同学能够电脑上进行调试和提交代码,我建立了相关的仓库:https://github.com/SharingSource/LogicStack-LeetCode 。
在仓库地址里,你可以看到系列文章的题解链接、系列文章的相应代码、LeetCode 原题链接和其他优选题解。
本博客所有文章除特别声明外,均采用 CC BY-SA 4.0 协议 ,转载请注明出处!