LC 190. 颠倒二进制位
题目描述
这是 LeetCode 上的 190. 颠倒二进制位 ,难度为 简单。
颠倒给定的 32 位无符号整数的二进制位。
提示:
- 请注意,在某些语言(如
Java
)中,没有无符号整数类型。在这种情况下,输入和输出都将被指定为有符号整数类型,并且不应影响您的实现,因为无论整数是有符号的还是无符号的,其内部的二进制表示形式都是相同的。 - 在
Java
中,编译器使用二进制补码记法来表示有符号整数。因此,在上面的 示例 2 中,输入表示有符号整数 -3,输出表示有符号整数 -1073741825。
进阶:
- 如果多次调用这个函数,你将如何优化你的算法?
示例 1:1
2
3
4
5
6输入: 00000010100101000001111010011100
输出: 00111001011110000010100101000000
解释: 输入的二进制串 00000010100101000001111010011100 表示无符号整数 43261596,
因此返回 964176192,其二进制表示形式为 00111001011110000010100101000000。
示例 2:1
2
3
4
5
6输入:11111111111111111111111111111101
输出:10111111111111111111111111111111
解释:输入的二进制串 11111111111111111111111111111101 表示无符号整数 4294967293,
因此返回 3221225471 其二进制表示形式为 10111111111111111111111111111111 。
提示:
- 输入是一个长度为 32 的二进制字符串
「对称位」构造
一个简单的做法是对输入的 $n$ 做诸位检查。
如果某一位是 1 的话,则将答案相应的对称位置修改为 1。
Java 代码:1
2
3
4
5
6
7
8
9public class Solution {
public int reverseBits(int n) {
int ans = 0;
for (int i = 0; i < 32; i++) {
if (((n >> i) & 1) == 1) ans |= (1 << (31 - i));
}
return ans;
}
}
C++ 代码:1
2
3
4
5
6
7
8
9
10class Solution {
public:
int reverseBits(uint32_t n) {
int ans = 0;
for (int i = 0; i < 32; i++) {
if ((n >> i) & 1) ans |= (1 << (31 - i));
}
return ans;
}
};
Python 代码:1
2
3
4
5
6
7class Solution:
def reverseBits(self, n: int) -> int:
ans = 0
for i in range(32):
if (n >> i) & 1:
ans |= (1 << (31 - i))
return ans
- 时间复杂度:
int
固定 $C = 32$ 位,循环次数不随输入样本发生改变。复杂度为 $O(C)$ - 空间复杂度:$O(1)$
「逐位分离」构造
另外一种做法是,每次都使用 $n$ 的最低一位,使用 $n$ 的最低一位去更新答案的最低一位,使用完将 $n$ 进行右移一位,将答案左移一位。
相当于每次都用 $n$ 的最低一位更新成 $ans$ 的最低一位。
Java 代码:1
2
3
4
5
6
7
8
9
10
11public class Solution {
public int reverseBits(int n) {
int ans = 0, cnt = 32;
while (cnt-- > 0) {
ans <<= 1;
ans += (n & 1);
n >>= 1;
}
return ans;
}
}
C++ 代码:1
2
3
4
5
6
7
8
9
10
11
12class Solution {
public:
int reverseBits(uint32_t n) {
int ans = 0, cnt = 32;
while (cnt-- > 0) {
ans <<= 1;
ans += (n & 1);
n >>= 1;
}
return ans;
}
};
Python 代码:1
2
3
4
5
6
7
8class Solution:
def reverseBits(self, n: int) -> int:
ans = 0
for _ in range(32):
ans <<= 1
ans += (n & 1)
n >>= 1
return ans
- 时间复杂度:
int
固定 32 位,循环次数不随输入样本发生改变。复杂度为 $O(1)$ - 空间复杂度:$O(1)$
分组互换
事实上,可以对于长度固定的 int
类型,我们可以使用「分组构造」的方式进行。
两位互换 -> 四位互换 -> 八位互换 -> 十六位互换。
代码:1
2
3
4
5
6
7
8
9
10public class Solution {
public int reverseBits(int n) {
n = ((n & 0xAAAAAAAA) >>> 1) | ((n & 0x55555555) << 1);
n = ((n & 0xCCCCCCCC) >>> 2) | ((n & 0x33333333) << 2);
n = ((n & 0xF0F0F0F0) >>> 4) | ((n & 0x0F0F0F0F) << 4);
n = ((n & 0xFF00FF00) >>> 8) | ((n & 0x00FF00FF) << 8);
n = ((n & 0xFFFF0000) >>> 16) | ((n & 0x0000FFFF) << 16);
return n;
}
}
C++ 代码:1
2
3
4
5
6
7
8
9
10
11class Solution {
public:
int reverseBits(uint32_t n) {
n = ((n & 0xAAAAAAAA) >> 1) | ((n & 0x55555555) << 1);
n = ((n & 0xCCCCCCCC) >> 2) | ((n & 0x33333333) << 2);
n = ((n & 0xF0F0F0F0) >> 4) | ((n & 0x0F0F0F0F) << 4);
n = ((n & 0xFF00FF00) >> 8) | ((n & 0x00FF00FF) << 8);
n = ((n & 0xFFFF0000) >> 16) | ((n & 0x0000FFFF) << 16);
return n;
}
};
Python 代码:1
2
3
4
5
6
7
8class Solution:
def reverseBits(self, n: int) -> int:
n = ((n & 0xAAAAAAAA) >> 1) | ((n & 0x55555555) << 1)
n = ((n & 0xCCCCCCCC) >> 2) | ((n & 0x33333333) << 2)
n = ((n & 0xF0F0F0F0) >> 4) | ((n & 0x0F0F0F0F) << 4)
n = ((n & 0xFF00FF00) >> 8) | ((n & 0x00FF00FF) << 8)
n = ((n & 0xFFFF0000) >> 16) | ((n & 0x0000FFFF) << 16)
return n
- 时间复杂度:如何进行互换操作取决于
int
长度。复杂度为 $O(1)$ - 空间复杂度:$O(1)$
PS. 类似的做法我在 191. 位1的个数 也介绍过。如果大家学有余力的话,建议大家在纸上模拟一下这个过程。如果不想深入,也可以当成模板背过(写法非常固定)。
但请不要认为「方法三」一定就比「方法一」等直接采用循环的方式更快。此类做法的最大作用,不是处理 int
,而是处理更大位数的情况,在长度只有 32 位的 int
的情况下,该做法不一定就比循环要快(该做法会产生多个的中间结果,导致赋值发生多次,而且由于指令之间存在对 n 数值依赖,可能不会被优化为并行指令),这个道理和对于排序元素少的情况下,我们会选择「冒泡排序」而不是「归并排序」是一样的,因为「冒泡排序」常数更小。
最后
这是我们「刷穿 LeetCode」系列文章的第 No.190
篇,系列开始于 2021/01/01,截止于起始日 LeetCode 上共有 1916 道题目,部分是有锁题,我们将先把所有不带锁的题目刷完。
在这个系列文章里面,除了讲解解题思路以外,还会尽可能给出最为简洁的代码。如果涉及通解还会相应的代码模板。
为了方便各位同学能够电脑上进行调试和提交代码,我建立了相关的仓库:https://github.com/SharingSource/LogicStack-LeetCode 。
在仓库地址里,你可以看到系列文章的题解链接、系列文章的相应代码、LeetCode 原题链接和其他优选题解。
本博客所有文章除特别声明外,均采用 CC BY-SA 4.0 协议 ,转载请注明出处!